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BACKGROUND: Many cohort studies have reported associations between PM2:5 and the hazard of dying, but few have used formal causal modeling
methods, estimated marginal effects, or directly modeled the loss of life expectancy.
OBJECTIVE: Our goal was to directly estimate the effect of PM2:5 on the distribution of life span using causal modeling techniques.

METHODS: We derived nonparametric estimates of the distribution of life expectancy as a function of PM2:5 using data from 16,965,154 Medicare
beneficiaries in the Northeastern and mid-Atlantic region states (129,341,959 person-years of follow-up and 6,334,905 deaths). We fit separate inverse
probability-weighted logistic regressions for each year of age to estimate the risk of dying at that age given the average PM2:5 concentration at each
subject’s residence ZIP code in the same year, and we used Monte Carlo simulations to estimate confidence intervals.
RESULTS: The estimated mean age at death for a population with an annual average PM2:5 exposure of 12 lg=m3 (the 2012 National Ambient Air
Quality Standard) was 0.89 y less (95% CI: 0.88, 0.91) than estimated for a counterfactual PM2:5 exposure of 7:5 lg=m3. In comparison, life expect-
ancy at 65 y of age increased by 0.9 y between 2004 and 2013 in the United States. We estimated that 23.5% of the Medicare population would die
before 76 y of age if exposed to PM2:5 at 12 lg=m3 compared with 20.1% if exposed to an annual average of 7:5 lg=m3.
CONCLUSIONS:We believe that this is the first study to directly estimate the effect of PM2:5 on the distribution of age at death using causal modeling
techniques to control for confounding. We find that reducing PM2:5 concentrations below the 2012 U.S. annual standard would substantially increase
life expectancy in the Medicare population. https://doi.org/10.1289/EHP3130

Introduction
Over 50 cohort studies have reported that long-term exposure
to airborne particulate matter (PM) with aerodynamic diameter
of ≤2:5 lm (PM2:5) is associated with higher mortality rates
(Beelen et al. 2014; Crouse et al. 2015; Kioumourtzoglou et al.
2016; Krewski et al. 2009; Lepeule et al. 2012; GBD 2013
Mortality and Causes of Death Collaborators 2015; Puett et al.
2009; Shi et al. 2016; Wang et al. 2016, 2017; Vodonos et al.
2018). This is supported by a substantial toxicological literature
showing that particle exposure produces endothelial dysfunc-
tion, atherosclerosis, systemic inflammation, decreased plaque
stability, and electrocardiogram abnormalities (Adar et al. 2010;
Bräuner et al. 2008; Brook 2008; Brook et al. 2009; Gareus et al.
2008; Hansen et al. 2007; Soares et al. 2009; Sun et al. 2008).
Consequently, the 2015 Global Burden of Disease (GBD) study
included ambient PM air pollution exposure among the largest
worldwide contributors to avoidable early deaths (GBD 2013
Risk Factors Collaborators et al. 2015). Recent studies have
reported associations between PM2:5 and mortality at concentra-
tions below the 2012 U.S. EPA National Ambient Air Quality
Standard (NAAQS) (Di et al. 2017; Wang et al. 2017).
However, to date few of these studies have used the approaches
of causal modeling and none has directly estimated effects on
life expectancies.

Causal modeling methods represent a valuable approach to
advance the argument for causality. The general approach is to try
to make an observational study closely mimic a randomized trial.
In addition, unlike traditional methods, causal modeling methods
providemarginal estimates of the effects of PM2:5, that is, estimates
that do not depend on the distribution of the covariates in the study
population. As such, their use in quantitative risk assessments,
such as the GBD estimates, is more straightforward. Specifically,
the coefficients of a standard Cox regression analysis, when
applied to an individual, produce the marginal effect of an incre-
ment in exposure, holding all covariates constant, but only for that
individual. However, because of the nonlinearity and lack of
collapsibility of the proportionate hazard model, the mean of the
individual marginal effects is not the population marginal effect
(Greenland and Pearl 2011). In contrast, inverse probability–
weighted (IPW) approaches do produce population marginal effect
estimates (Robins et al. 2000).

The results of most survival analyses, including previous air
pollution cohort studies, are presented as hazard ratios (HRs)
associated with a given increment of exposure. The concept of an
HR is not clear to many policy makers or to the public. Nor does
it directly translate into quality-adjusted life years (QUALYs) or
disability-adjusted life years (DALYs). No one has ever asked
their physician, “If I quit smoking, what will that do to my hazard
of dying?” They want to know how it will affect their life span.
Providing a more direct estimate of the effect of exposure on life
expectancy, therefore, would be valuable. Here we present an
IPW survival model to estimate the marginal effect of PM2:5 ex-
posure on the distribution of life expectancy in the United States,
which, under appropriate conditions, is a causal estimate.

Data and Methods
We obtained the Medicare beneficiary denominator file, which
contains information on all Medicare participants in the United
States, from the Center for Medicare and Medicaid Services
(ResDAC2018).We constructed an open cohort using all beneficia-
ries≥65 y of age in the Northeastern and mid-Atlantic region states
(Maine, New Hampshire, Vermont, Massachusetts, Rhode Island,
Connecticut, New York, New Jersey, Delaware, Pennsylvania,
Maryland, Washington, DC, Virginia, and West Virginia) from
2000 to 2013, and examined survival of those beneficiaries as our
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outcome. Medicare insurance covers over 95% of the population
≥65 y of age in the United States. Medicare participants alive on 1
January of the year following their enrollment in Medicare were
entered into the open cohort for survival, and follow-up periods
were calendar years. Persons alive and enrolled prior to 2000 were
entered into the cohort in 2000. The data set included 16,965,154
Medicare participants. Among these, we had 129,341,959 person-
years of follow-up and 6,334,905 deaths.

Exposure Data
Weused a previously published exposure model to estimate annual
average concentrations of PM2:5 at each ZIP code in the Northeast
(Kloog et al. 2014). This model has previously been used in multi-
ple epidemiological studies (Chiu et al. 2014; Fleisch et al. 2014;
Kloog et al. 2015). It is a hybridmodel that integrates land use, me-
teorological, and satellite remote sensing data. Aerosol optical
depth (AOD) is an optical measurement of the extinction of light
by particles in the air.We used the 1× 1 km griddedAOD data that
are available daily from the NASA Aqua and Terra satellites,
which are processed using the Multi-Angle Implementation of
Atmospheric Correction (MAIAC) algorithm (Lyapustin et al.
2011). In brief, we calibrated the AOD–PM2:5 relationship on each
day during the study period using data from grid cells with both
ground PM2:5 concentrations from the U.S. EPA or Interagency
Monitoring of Protected Visual Environments (IMPROVE) net-
works and AOD measurements (FED 2018), as well as land use
and meteorological variables, and predicted PM2:5 on the remain-
ing grid cells. We used inverse probability weighting to address
selection bias due to nonrandomly missing AOD measurements
due to snow and clouds or other factors. Finally, we filled in grid
cell–days without AOD by regressing the nonmissing measure-
ments for that grid cell against nearby monitors and local land use
and meteorological variables. PM2:5 predictions were validated
using 10-fold cross-validation. We found a high out-of-sample R2

of 0.89 (Kloog et al. 2014). We used these 1 × 1 km predictions to
compute the annual average PM2:5 in each ZIP code by averaging
the predictionswithin ZIP code.

Covariates. From the Medicare denominator file for each cal-
endar year, we obtained the age, sex, race, ZIP code of residence
for that year, and date of death (or censoring) of each participant.
Age and ZIP code were updated annually. Race and sex were self
reported at enrollment. We also obtained annual information about
their eligibility for Medicaid, which provides additional coverage
for low-income persons. This file is publicly available from the
Centers forMedicare andMedicaid Services (ResDAC2018).

We obtained small area–level social, economic, and housing
characteristic variables from the U.S. Census Bureau 2000
Census Summary File 3 (U.S. Census Bureau 2010) at the ZIP
code tabulation–area level (ZCTA). A ZCTA converts a ZIP code,
which is a set of line segments for postal delivery into an area mea-
sure for computing census variables. The variables used were
ZCTA percentage of the population that was black, Hispanic, ≥65
y of age living in poverty, living in owner-occupied housing, and
with less than a high school education as well as median household
income, median value of owner-occupied housing, and population
density; all of these variables were updated each year. Annual
updates were obtained by linearly extrapolating between the cen-
sus years. To capture long-term smoking history of Medicare par-
ticipants in each ZIP code, we used the Medicare data to compute
their hospitalization rate for lung cancer by ZIP code for each year.
In addition, the county-level percentage of people who ever
smoked and their mean body mass index (BMI) scores were
obtained from the CDC Behavioral Risk Factor Surveillance sur-
vey (CDC 2013), which were then assigned to each ZCTA within
the county and updated each year. From the Dartmouth Health

Atlas, we obtained percentage of Medicare participants who had a
hemoglobin A1c test, a low-density lipoprotein cholesterol (LDL-
C) test, a mammogram, and a visit to a primary care physician for
each year in each hospital catchment area and assigned it to all
ZCTAs in that area (Wennberg and Cooper 1996). Dartmouth
catchment areas are nonoverlapping and, in denser populated
areas, can include multiple hospitals. As covariates, we used indi-
vidual age, sex, race (white, black, Asian, other), andMedicaid eli-
gibility as well as ZCTA-level percentage of the population that
was black, Hispanic, ≥65 y of age living in poverty, living in
owner-occupied housing, with less than a high school education,
with an annual physician visit, and with tests for HbA1c, LDL-C,
mammography as well as median household income, median value
of owner-occupied housing, population density, lung cancer rate,
smoking rate. Race and sex were time-invariant covariates; all
other covariates were updated each year.

One advantage of the Medicare cohort is that the dropout rate
is lower than in most cohorts. People only lose eligibility by
dying, and other than administrative censoring in 2013, the only
loss to follow-up occurred when people moved to a different
region of the country. Of the 16,965,154 participants 469,996
(2.77%) moved out of the region during follow-up, and we
assumed they were missing at random, conditional on their expo-
sure and covariates. An additional 1,881,578 participants moved
within the region and were assigned exposure and covariates for
their new addresses after the move.

Statistical Methods
Survival data with time-varying covariates are typically analyzed
using the Andersen-Gill formulation of Cox’s proportional hazard
model with one observation per person per follow-up period and
estimated hazard rates, not survival times. Approaches that directly
model the failure time, such as accelerated failure-time models, gen-
erally require an assumption about the distribution of the failure
times. A nonparametric approach to estimating the distribution is
particularly advantageous in cohort studies where there is left cen-
soring at age of entry and a skewed distribution of life expectancy.

If a separate logistic regression is fit for death at each year of
age, we can obtain an estimate of the probability of failing at t y
of age, conditional on the covariates, and on the person having
survived until t y of age. These estimates make no parametric
assumption about the distribution of the survival times. Further,
they allow for the effect of both the exposure of interest and of all
of the covariates to differ by year of age.

Causal modeling seeks to make the analysis of observational
data mimic a randomized trial as closely as possible. In a random-
ized trial, the randomization assures that (at the time of randomiza-
tion) the exposure of interest is independent of the covariates.
Propensity score methods seek to recover that property by making
the distribution of the exposure independent of the covariates. For
a continuous exposure, the generalized propensity score fits a lin-
ear regression of that exposure against the measured covariates
(Imai and van Dyk 2004). The probability density of the residual
for each observation is the probability density of the subject receiv-
ing their observed exposure level in that year given their covariates
in that year. This can be used for propensity-score matching or for
IPW analyses. In IPW, this density is the denominator of the IPW,
and the numerator is the marginal probability density of exposure
(Lunceford and Davidian 2004). If the logistic regression for sur-
viving each year of age is weighted by the IPW and the linear
regression used to derive the weights was correctly specified (i.e.,
it included the necessary interactions and accounted for nonlinear-
ity), the exposure should be independent of the covariates in the
weighted sample. This can be confirmed by computing the stand-
ardized mean difference in each covariate for observations above
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versus below the mean level of exposure, and values below a
level of 0.1–0.2 are generally taken as indications of balance. If
the standardized mean difference for one or more covariates is
larger than that threshold, then the linear regression can be modi-
fied by including additional interactions or splines until the
weights are appropriately balanced vs. If all relevant confounders
are included and positivity is met (i.e., each person had a nonzero
probability of receiving any exposure), then analysis of the
weighted sample will produce a causal marginal estimate of the
effect of exposure.

For example, if obese people tend to have higher exposure,
we can render exposure independent of obesity by giving more
weight to observations from obese people with lower exposure.
Because the covariates no longer have to be controlled for in
the regression for the outcome (being independent of exposure in
the weighted sample), the effect estimate is not conditional on the
covariates but is, instead, a marginal estimate.

We fit a separate logistic regression to predict death at each
year of age, using the corresponding annual average PM2:5 con-
centration at each subject’s residential ZIP code as the exposure
and age-specific IPW weights to allow the influence of confound-
ers to change with age. We used robust variance estimates from
the sandwich package in R (Version 2.3; R Development Core
Team) to estimate the confidence intervals (CIs) to account for
correlations in the errors that could be induced by either spatial
correlation in the residuals or the IP weights.

A key advantage of propensity score models is the ability to
check whether all of the covariates are independent of exposure in
the weighted sample. We first fit a model with linear terms for all
covariates and checked the balance. Based on those results, we
added interaction terms and splines for covariates that were not bal-
anced and iterated until good balance was achieved. The final
model included interaction terms of black racewithMedicaid eligi-
bility, ZIP code percentage black with population density, and
male with population density and Medicaid eligibility. Natural
cubic splines with 3 df were used with the percentage of ZIP code
who was black, median household income, percentage with annual
physician visit, percentage below poverty level, population den-
sity, percentage living in owner-occupied housing, median value
of housing, smoking rate, percentage with mammogram screening,
and percentagewith hemoglobin A1c screening.

This approach estimated the condition probability of dying at
t y of age given exposure x among people that survived to t y of
age. We can compute that survival probability (to t y of age) as the
cumulative product of (1–pi), for i up to t y of age, where pi is the
probability of dying at i y of age. Multiplying the conditional prob-
ability pt by the survival probability to t y of age gives the uncondi-
tional probability of dying at t y of age. Given the unconditional
probabilities of dying at each age at a given exposure, we can com-
pute the mean age at death given that exposure, and the probability
of living to only ≤75 y of age, or of living past 85 y of age. We
estimated these quantities for two counterfactual levels of PM2:5
exposure: the 2012 U.S. National Ambient Air Quality Standard
(https://www.epa.gov/pm-pollution/2012-national-ambient-air-
quality-standards-naaqs-particulate-matter-pm) of 12 lg=m3 and an
alternative annual average PM2:5 concentration of 7:5 lg=m3.We
estimated CIs for these quantities using 10,000 Monte Carlo sim-
ulations from the asymptotic distribution of the predicted proba-
bilities estimated for each age.

Although the goal of this paper was to directly estimate effects
on the distribution of life span, which is inherently different from
previous studies that estimated hazard rates, it is useful to compare
results across studies. To produce an estimate akin to a hazard rate,
we computed a weighted average of our age-specific coefficients
for PM2:5, weighting each coefficient proportional to the number of

deaths in that year of age and inversely by the variance of the coeffi-
cient, and report this as well.

This study was reviewed and granted an exemption as use of
previously collected administrative data by the institutional
review board of the Harvard School of Public Health.

Results
Table 1 shows the characteristics of the study population. Because
this is an open cohort, the variables change each year and the aver-
ages are across all years. Themean agewas 75.5 y, 11%were receiv-
ing Medicaid, and the population was predominantly white. The
mean PM2:5 exposure was 10:3 lg=m3, the 25th and 97.5th percen-
tiles of exposure were 7:33lg=m3 and 12:94lg=m3, respectively,
and 70%of the person-years had exposures of <12lg=m3. The pop-
ulation inhabited 7,600 ZIP codes, with a mean number of partici-
pants of 2,232. There were 430 hospital service areas with an
average of 39,454 participants each, and 398 counties with an aver-
age of 42,626 participants.

Figure 1A shows the weighted standardized mean difference
in covariates above versus below the mean PM2:5 concentration
to evaluate the balance achieved by the propensity score. In gen-
eral, the standardized mean differences are near zero, except for
males. For example, the standardized difference between high
and low PM2:5 for lung cancer rate was 0.0005, and for percent-
age of ZIP code below poverty level was −0:0356. In contrast,
for males, it was 0.3255, indicating that subjects with PM2:5 ex-
posure <10:3 lg=m3 were more likely to be male. Because of
this, and because of the significant difference in life expectancy
between men and women, we repeated our analysis separately for

Table 1. Distribution of variables in all Medicare beneficiaries ≥65 y of age
residing in the states of Maine, New Hampshire, Vermont, Massachusetts,
Rhode Island, Connecticut, New York, New Jersey, Delaware, Pennsylvania,
Maryland, Washington, DC, Virginia, and West Virginia who were enrolled
during 2000–2013 (n=16,965,154; person-years = 129,341,959).

Variable
Percentile

25th 50th 75th Mean

Age (y) 69.00 74.00 81.00 75.5
Male (%) 41.0 44.2 47.6 44.8
Medicaid coverage (%) 4.8 8.2 13.7 11.0
Black 0 0.6 4.4 6.9
Asian 0 0.3 0.9 0.9
Other race 0 0.3 1.0 1.5
Area-based covariates
Median income (USD)a 38,000 48,600 66,900 55,700
Percentage below poverty levela 4.8 7.7 12.0 10.6
Population density
(people–km−2)a

26 114 752 1453

Median housing value (USD)a 95,900 160,600 263,800 208,000
Percentage owner occupieda 68 78 84 72
Percentage <high schoola 20 28 38 30
BMI (kgm−2)b 26.9 27.5 28.2 27.6
HbA1c (% screened)c 81.3 84.0 86.3 83.6
LDL-C (% screened)c 77.7 80.7 82.9 80.2
Mammography (%)c 62.9 65.6 70.0 65.2
Lung cancer rate ( × 10−5)d 27.6 39.2 53.2 48.0
Ever Smoker (%)b 45.4 48.6 51.3 48.2
Percentage ZIP code blacke 0.3 1.6 7.6 8.0
Percentage ZIP code Hispanice 0.9 1.8 4.9 5.2
Percentage annual checkupc 74.9 78.3 81.6 77.5
PM2:5 (lg=m3) 9.2 10.4 11.4 10.3

Note: Percentiles of the distribution of the variables are over all observations.
aZIP code data (U.S. Census Bureau 2010).
bCounty level (CDC 2013).
cDartmouth Health Atlas Hospital Catchment Area data.
dRate of hospital admissions of all Medicare enrollees in the ZIP code, computed from
CMS data (ResDAC 2018).
ePercentage of all inhabitants in ZIP code, not just Medicare cohort participants (U.S.
Census Bureau 2010).

Environmental Health Perspectives 127002-3 126(12) December 2018

https://www.epa.gov/pm-pollution/2012-national-ambient-air-quality-standards-naaqs-particulate-matter-pm
https://www.epa.gov/pm-pollution/2012-national-ambient-air-quality-standards-naaqs-particulate-matter-pm


each sex. Figure 1B,C shows the balance achieved for women
and men separately.

In the full population, the distribution of the probability of
death according to age is shifted to the left for the 12-lg=m3

PM2:5 exposure scenario relative to the 7:5-lg=m3 scenario,
resulting in a higher probability of dying at a younger age (Figure
2A), and an estimated difference in average life expectancy
between the two scenarios of 0.89 y (95% CI: 088, 0.91)
(Table 2). The higher exposure scenario resulted in an addi-
tional 3.4% of the population dying before 76 y of age (95%
CI: 3.5%, 3.3%) and 3.7% (95% CI: 3.6%, 3.8%) fewer people
living past 85 y of age.

The shift was more pronounced for men than for women
(Figure 2B,C), resulting in a larger difference in average life ex-
pectancy between the higher- and lower-exposure scenarios for
men [1.17 y (95% CI: 1.14, 1.19)] than for women [0.74 y (95%
CI: 0.72, 0.77)] and a larger difference in the probability of death
at ≤75 y of age under the higher-versus lower-exposure scenario
for men [4.7% higher (95% CI: 4.8, 4.6)] than for women [2.6%
higher (95% CI: 2.7, 2.5)] (Table 2). The 0.40-y difference (95%
CI: 0.44, 0.36) in the effect of PM2:5 on life expectancy between
men and women was significant.

The weighted average of the age-specific coefficients for
death with a 1-lg=m3 increase in PM2:5 was 0.0225, which is

Figure 1. Standardized mean differences in covariates between observations above and below the mean annual PM2:5 concentrations of 10:4 lg=m3 after
weighting using the propensity score. (A) Standardized differences in the entire cohort; (B) standardized differences in women; and (C) standardized differences
in men. The propensity score was fit using the following individual covariates male, black, Asian, other race, Medicaid eligible and the following area-based
variables percentage of people >65 y of age who had screening for low-density lipoprotein cholesterol that year, percentage of women >65 y of age who had a
mammogram that year, percentage of people >65 y of age who had hemoglobin A1c measured that year, percentage of people >65 y of age who had an annual
checkup that year, all by hospital catchment area; lung cancer hospitalization rate in the Medicare population, percentage of population that is black, percentage
of population that is Hispanic, median household income, median value of owner-occupied housing, percentage of housing occupied by owner, percentage of
persons >65 y of age with less than a high school education, and population density, all by ZIP code; and mean body mass index in the county and smoking
rate in the county. In addition, interaction terms were included for percentage black × population density, Medicaid eligibility × population density, and male
sex ×population density. Nonlinear terms were used for percentage of the population that was black, median household income, percentage with less than a
high school education, percentage with an annual checkup, median value of housing, percentage below poverty level, population density, percentage owner-
occupied housing, percentage with HbA1c screening, percentage of women with mammograms, and percentage of smokers.
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consistent with an HR of 1.25 for a 10-lg=m3 increment. This
estimate is higher than those reported for earlier studies done at
higher PM2:5 concentrations [e.g., the HR of 1.14 reported by
Laden et al. (2006)] but is consistent with the higher HRs
reported by recent studies at lower exposures such as ours (e.g.,
the HR of 1.26 reported by Pinault et al. (2016)].

Discussion
We believe that this is the first study to directly estimate the effect
of PM2:5 on the distribution of age at death modeling that distribu-
tion nonparametrically and using causal modeling techniques to
control for confounding. We found a highly significant difference
in the mean age of death [0.89 y (95% CI: 088, 0.91)] for a
4:5-lg=m3 difference in exposure, going from an exposure that
met the 2012 ambient standard of 12lg=m3 to 7:5lg=m3. If our

propensity score model, which allows the effect of confounders to
vary by year of age, is valid, this is a causal estimate. Moreover,
our methods allowed us to estimate how PM2:5 exposure influences
the full distribution of life expectancy in addition to changing the
mean and allows for a different effect of PM2:5 exposure at each
age. We estimated that 23.5% of the Medicare population would
die before 76 y of age if they were exposed to the 2012 ambient
standard PM2:5 concentration of 12lg=m3 compared with 20.1% if
the Medicare population was exposed to an annual average of
7:5 lg=m3. In a population of 16,965,154, this translates to over
half a million extraMedicare participants dying before 76 y of age.
Similarly, we estimated that 40.8% of Medicare recipients would
live past 85 y of age if exposed to 12-lg=m3 PM2:5 compared with
44.5% at 7:5-lg=m3 PM2:5.

To put these results in perspective, the National Center for
Health Statistics reported that, between 2004 and 2013, the U.S.

Figure 1. (Continued.)

Environmental Health Perspectives 127002-5 126(12) December 2018



life expectancy at 65 y of age increased by 0.9 y (National Center
for Health Statistics 2017). During that decade, the average PM2:5
concentration in our cohort decreased from 11.74 to 8:79lg=m3,
or by 2:95lg=m3. Assuming proportionality, this decrease may
have accounted for 0.58 of the 0.90-y increase in life expectancy, a
substantial fraction. Is this plausible?We believe it is. For decades,
cardiovascular mortality rates have been falling, principally
because of the decrease in smoking rates, the increased use of sta-
tins and hypertensive medication, and the introduction of emer-
gency catheterization labs to interrupt myocardial infarctions,
among other factors. However, these changes had mostly occurred
by 2004, whereas the increase in life in the next decade was una-
bated or reduced in magnitude. This suggests other causes played
an increasing role, of which air pollution could be one. Further
study is clearly warranted to see whether air pollution improve-
ments accounted for two-thirds of the change in that decade and
what the effect is elsewhere.

This paper adds to an existing literature of many cohort stud-
ies that have reported associations between PM2:5 exposure and
the hazard rate for death (Vodonos et al. 2018). Because it esti-
mates changes in mean life expectancy and in the proportion of

the population who die early (≤75 y of age) it cannot be com-
pared numerically to those results. However, as noted above, the
results are broadly consistent with newer studies at lower PM2:5
concentrations (as this one). The Vodonos meta-analysis con-
firmed that across 53 cohorts, the hazard rate per 1lg=m3 was
higher at lower PM2:5 concentrations. Together, these studies pro-
vide strong evidence for the causality of the association because
they were conducted by multiple investigators in multiple coun-
tries, with a wide range of covariate control strategies. This study
adds to the evidence by using a causal modeling approach to con-
trol confounding. Using inverse probability weights that change
for each person and year of follow-up generates causal estimates
if all relevant confounders are included and appropriately speci-
fied in the propensity score analysis.

To be a confounder, a variable must be a predictor of the ex-
posure as well as the outcome. A key issue with this study is the
lack of information on many individual covariates, such as smok-
ing and BMI. A recent analysis of a random sample of the
Medicare population showed that neither of these predictors of
mortality were associated with PM2:5 exposure at the ZIP code
level and, hence, are not confounders (Di et al. 2017). In addition,
86% of the beneficiaries were nonsmokers.

However, most individual predictors of health are unlikely to
be predictors of PM2:5. For example, individual smoking causes a
trivial impact on ambient PM2:5. Why then is smoking a possible
confounder? It is because neighborhoodswithmore smokers might
also be neighborhoods with higher ambient PM2:5. In that case,
imagine I moved a nonsmoker from a neighborhood with few
smokers to a neighborhood with many. By hypothesis, her PM2:5
exposure is likely to be higher in the new neighborhood. However,
this has nothing to do with her individual smoking status. The
hypothesized confounding is by neighborhood smoking status, and
controlling for neighborhood smoking is the appropriate control.
The same holds for many other individual predictors of health,
such as cholesterol levels and BMI, which are not causes of PM2:5.
They can only be associated with neighborhood-level PM2:5
because the same (e.g., socioeconomic) factors that cause people
with high or low levels of the individual predictors to cluster in
neighborhoods may also be predictors of exposure. Hence, control

Figure 2. Nonparametric estimate of the probability of death according to age (in years) under two different counterfactual annual average PM2:5 concentra-
tions just meeting the 2012 U.S. EPA standard of 12:lg=m3 vs. 7:5: lg=m3 for (A) the entire cohort, (B) women, and (C) men. Estimates were generated using
separate logistic regressions for each year of age. The shaded area displays the 95% confidence intervals about the curves.

Table 2. Effect size estimates (mean± confidence interval) for the difference
in life expectancy and of percentage of the population dying before 76 y of
age in Medicare beneficiaries ≥65 y of age residing in the northeast and
mid-Atlantic states, at two counterfactual levels of PM2:5 concentration:
12lg=m3 and 7:5 lg=m3.

Exposure category Mean age at death (y)
Percentage dying
at <76 y of age

12lg=m3 82.51 ( 82.50, 82.53) 23.5 (23.4, 23.6)
7:5 lg=m3 83.41 (83.39, 83.42) 20.1 (20.0, 20.2)
Difference 0.89 (0.88 0.91) 3.4 (3.5, 3.3)
Females
12 lg=m3 83.64 (83.63, 83.65) 19.5 (19.4, 19.6)
7:5 lg=m3 84.38 (84.37, 84.40) 16.9 (16.8, 17.0)
Difference 0.74 (0.72, 0.77) 2.59 (2.70, 2.49)
Males
12 lg=m3 81.14 (81.13, 81.16) 28.3 (28.2, 28.3)
7:5 lg=m3 82.31 (82.29, 82.33) 23.5 (23.4, 23.6)
Difference 1.17 (1.14, 1.19) 4.7 (4.8, 4.6)
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of neighborhood-level covariates, and particularly neighborhood-
level socioeconomic variables, is the key to confounding control in
this scenario, not control for individual risk factors. Our study con-
trolled for a large number of neighborhood-level socioeconomic
variables and other confounders and updated them annually, which
is a strength of the study. The issue of neighborhood versus perso-
nal confounding and the advantage of neighborhood exposure in
this regard has also been discussed elsewhere (Weisskopf and
Webster 2017).

Our estimates are larger than estimates from two ecological
studies of associations between changes in life expectancy and
air pollution over time (Correia et al. 2013; Pope et al. 2009).
This may be explained in part by better exposure classification
(ZIP code vs. county level, and accounting for residential mobil-
ity) and better control of confounding, including individual-level
and ZIP code–level factors, in the present study.

Supporting this view, the American Cancer Society (ACS)
study and Women’s Health Initiative cohorts both found stronger
associations between PM2:5 and mortality for within-versus
between-county contrasts (Jerrett et al. 2005; Miller et al. 2007),
and an updated analysis of the ACS study found that controlling
for small-area socioeconomic variables increased effect size esti-
mates for PM2:5 and mortality relative to estimates that did not
control for them (Krewski et al. 2009; Miller et al. 2007).
Consequently, we believe the larger effect size we report reflects
less exposure error and better control for confounding.

Controlled human exposure studies and randomized trials sup-
port causal effects of air pollution on health. For example, a random-
ized trial of air filtration versus sham filtration for 48 h in the
dormitory rooms of 35 college students reported that air filtration
was associated with increased Long Interspersed Nuclear Element-
1 (LINE-1) methylation and with methylation of genes involved in
inflammation, coagulation, and vasoconstriction (Chen et al. 2016).
A similar randomized trial of 55 college students reported that levels
of cortisol, cortisone, epinephrine, norepinephrine, glucose, mem-
brane eicosanoids, 8-hydroxy-2-deoxyguansine, malondialdehyde,
iso-prostaglandin F2a, and superoxide dismutase as well as systolic
blood pressure and insulin resistance were lower after 9 d of air fil-
tration compared with sham filtration (Li et al. 2017). A study of 50
healthy adults reported a reduction in nitroglycerin-induced vasodi-
lation, increased sympathetic tone, and decreased parasympathetic
tone following 5 h of exposure to air from a busy street (PM2:5
at 24lg=m3) versus exposure to filtered air (PM2:5 at 3 lg=m3)
(Hemmingsen et al. 2015). A study of 15 healthy adults who wore a
continuous blood pressure monitor while walking in central Beijing
reported that systolic blood pressure was lower when participants
wore a particle-filtering mask during their walk (Langrish et al.
2009). In longer-term exposure studies, Chuang et al. (2017)
randomized 200 participants to a particle filter versus a sham filter
for a year; the sham filter resulted in a 7:8-mmHg increase in sys-
tolic blood pressure among the participants.

Animal studies also support an effect of PM2:5 on mortality and
are discussed in detail in the U.S. EPA Integrated Science
Assessment for ParticulateMatter (U.S. EPA 2018). To highlight a
few relevant studies, mice exposed to ambient air (16:8 lg=m3)
had lower lung function than those exposed to filtered air
(2:9 lg=m3) (Mauad et al. 2008). Other studies of long-term expo-
sure in mice reported increased atherosclerotic plaque, increased
macrophage counts and tissue factor in plaques, increased vaso-
constriction, and increased oxidation of LDL-C (Sun et al. 2008;
Soares et al. 2009).

This study has limitations. First, we assumed that the propen-
sity score model was well specified. We checked the balance for
each covariate, which provides reasonable assurance on that point.
We also assumed there were no important omitted cofounders.

This assumption is common to all epidemiology studies whether
they use causal modeling techniques or not. However, we clearly
have only a limited number of individual-level covariates. As
noted above, there can be few, if any, individual variables that are
predictors of both death and PM2:5. Obesity does not produce par-
ticles. Rather, to confound the association, those predictors must
be correlated with exposure because both have a common anteced-
ent, and that occurs on an area level. That confounding is because
both risk factors and exposure cluster by area. Further, the antece-
dents that produced this area-level confounding are likely to be
race and socioeconomic status. In that case, controlling for the
antecedents blocks the confounding. In our study, we controlled
for individual-level race and poverty and small area–level race/
ethnicity as well as many measures of socioeconomic status such
as percentage of elderly living in poverty, median income, median
house value, education, BMI, and smoking. Given the extent of
area-level antecedents we controlled for, we believe the potential
for confounding to be limited.

Another limitation of this paper is that we assumed a linear asso-
ciation between PM2:5 and the risk of dying at each age. However,
the 2:5–97:5% range of exposure is from 7.3 to 12:9 lg=m3, andwe
believe any reasonable concentration–response function is essen-
tially linear within that range.

Another limitation is our use of a single year of PM2:5 expo-
sure. In the Nurses’ Health Study, a moving average of different
numbers of months was used, and no further information was
gained by using monthly averages of longer than 48 months
(Puett et al. 2009). Other studies have used annual averages and
gotten results similar to those of studies that used longer exposure
periods (Di et al. 2017). Using longer exposure periods would
have resulted in dropping years of follow-up from our study.

Finally, causality is a conclusion of humans, not the output of
a statistical model. Our model produced causal estimates if cer-
tain conditions are met, and it is not possible to verify that those
conditions were truly met. That is why judgments of causality
must consider consistency with other studies and experimental
evidence.

Conclusions
We found that exposure of the Medicare population to PM2:5 at
the 2012 National Ambient Standard is associated with a substan-
tial reduction in life expectancy, a substantial increase in the pro-
portion who die at ≤75 y of age, and a substantial decrease in the
proportion who live past 85 y of age. These results are consistent
with HRs estimated by previous observational studies and with a
wide range of experimental studies that support causality. The
means for reducing ambient PM2:5 concentrations [including
scrubbers and oxides of nitrogen (NOx) controls on electric gen-
erating facilities, NOx controls on gasoline engines, NOx and par-
ticle controls on Diesel engines] are known and available; hence,
significant public health gains are within reach.
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